1 (##1#1	B11B1	18118	11881	1811	1881
				Ш	

(Pages: 4)

Reg.	N	0				• •											
Name) :		 		_									0			

Eighth Semester B.Tech. Degree Examination, October 2014 (2008 Scheme)

08.802 : COMPUTER SYSTEM ARCHITECTURE (R)

Time: 3 Hours

Max. Marks: 100

PART-A

(Answer all questions)

- 1. Which PRAM variant can best model SIMD machines and how?
- List out the metrics affecting the scalability of a computer system for a given application.
- 3. Distinguish between multiprocessors and multicomputers based on their structures, resource sharing and interprocessor communications.
- 4. Describe the memory level hierarchy.
- 5. Compare temporal locality, spatial locality and sequential locality.
- 6. Describe bus arbitration in multiprocessor system.
- 7. What is meant by memory interleaving?
- 8. Characterize the architectural operations of SIMD and MIMD computers.
- 9. What is the use of crossbar network?
- 10. Describe briefly about the Flynn's classification.

(10×4=40 Marks)

PART – B (Each question carries 20 marks)

Module - I

- a) A workstation uses a 15 MHz processor with a claimed 10-MIPS rating to execute a given program mix. Assume one cycle delay for each memory access.
 - i) What is the effective CPI of this computer?
 - ii) Suppose the processor is being upgraded with a 30 MHz clock. However the speed of the memory subsystem remains unchanged, and consequently two clock cycles are needed per memory access. If 30% of the instructions require one memory access and another 5% require two memory accesses per instruction, what is the performance of the upgraded processor with a compatible instruction set and equal instruction counts in the given program mix?
 - b) List the difference between UMA, NUMA and COMA models.

OR

- a) Distinguish between register-to-register and memory-to-memory architecture for building conventional multivector supercomputers.
 - b) Analyze the data dependences among the following statements in a given program:

S1: Load R1, 1024 /R1 \leftarrow 1024/

S2: Load R2, M(10) /R2 \leftarrow Memory(10)/ τ

S3: Add R1, R2 $/R1 \leftarrow (R1) + (R2)/$

S4: Store M(1024), R1 /Memory (1024) ← (R1)/

S5: Store M((R2)), 1024 /Memory(64) ← 1024/

Where (Ri) means the content of register Ri and Memory(10) contains 64 initially.

- i) Draw dependence graph to show all the dependences.
- ii) Are there any resource dependences if only one copy of each functional unit is available in the CPU?

Module - II

- 13. a) Consider the execution of a program of 15000 instructions by a linear pipeline processor with a clock rate of 25 MHz. Assume that the instruction pipeline has five stages and that one instruction is issued per clock cycle. The penalties due to branch instruction and out-of-sequence executions are ignored.
 - i) Calculate the speed up factor in using this pipeline to execute the program as compared with the use of an equivalent nonpipelined processor with an equal amount of flow-through delay.
 - ii) What are the efficiency and throughput of this pipelined processor?
 - Explain in detail about various interleaved memory organization in multiprocessor system.

OR

14. Consider the three-stage pipelined processor specified by the following reservation table:

	1	2	3	4	5	6	7	8
S1	X					Х		X
S2		X		Х				2
S3			Х		Х		Х	

- i) List the set of forbidden latencies and collision vector.
- ii) Draw state transition diagram showing all possible initial sequences (cycle) without causing a collision in the pipeline.
- iii) List all the simple cycles from the state diagram.
- iv) Identify the greedy cycles among the simple cycles.
- v) What is the Minimum Averages Latency (MAL) of this pipeline?
- vi) What is the minimum allowed constant cycle in using this pipeline?
- vii) What will be the maximum throughput of this pipeline?
- viii) What will be the throughput if the minimum constant cycle is used?

Module - III

- 15. a) Explain any two cache coherence protocol.
 - b) Describe how multiport memories used in multistage networks.
 - c) What is the use of reservation station?

OR

- a) Discuss the various instructions issue and completion policies with and without instruction look ahead in a superscalar processor.
 - b) Describe data flow in hybrid architecture.

(3×20=60 Marks)